
A Prototyping Platform to Validate and Verify
Network Service Header-based Service Chains

Manuel Peuster, Stefan Schneider, Frédéric Tobias Christ
and Holger Karl

Paderborn University
stefan.schneider@upb.de

IEEE NFV-SDN 2018, Verona, Italy

mailto:stefan.schneider@upb.de

2

Scenario: Chain functions to build a service

• NFV to virtualize network
functions between user and
target service

• All traffic passes through those
functions

• But how to control how the traffic
is steered through the
functions?

NFVI
target

source

F1
F2

F3

F4

3

IETF SFC Architecture and NSH

• Components
• Service function forwarder (SFF)

• e.g., SDN switch

• Service function (SF)
• Service classifier

• Flow
1. SFF sends (all) incoming traffic to

classifier
2. classifier selects SFC, encapsulates

packet using NSH, forwards to SFF
3. SFF forwards according to NSH
4. Last SFF removes NSH

4

Problem: Prototyping support

• I am an NS developer
• I have a set of service functions (SFs)

• I want to modify them to be NSH-enabled
• I want to combine them to a complex SFC
• I want multiple forwarding paths in the SFC

• I want to (locally) test the SFCs behavior,
e.g., correct steering? Do the used SFs
correctly re-classify packets?

Developer
SF1

SF2 SF5SF4
SF3

?

What tools to use?

Lack of prototyping platforms
for NSH-based SFCs!

5

What would we need from a prototyping platform for NSH?

1. Quick deployment and execution of arbitrary SFs

2. Support developer-defined, complex topologies

3. Realistic traffic transport and correct implementation of the forwarding
paths

4. Seamless integration with NFV landscape, e.g., MANO solutions

6

Related Work

• Most research work is based on simulations
à does not help for prototyping of real SFCs

• Full-featured, real-world testbeds
à SFC prototypes can be fully tested
à but not available to every developer
à high resource requirements
à prototyping is often time intensive

• Emulation
à looks promising: Lightweight, fast, less resource needs, can execute real SFs
à but existing emulators, e.g., Mininet, VLSP, or vim-emu do not support NSH

Proposed approach:
Extend vim-emu to support NSH-based chaining

7

vim-emu?

• Vision: Create an easy-to-use and
easy-to-deploy NFV test platform

• Focus: Test VNFs and service chains
locally on developer’s machine

• Main idea: Emulate multi-PoP NFVI
Infrastructure

• But: Interface with real MANO
systems

vim-emu

VNFM

NFVOOSS/BSS

VNF
VNF

VNF

M
A

N
O

EM

NFVINFVINFVI
VIMVIMVIM

Scope of the Emulation Platform in a
simplified ETSI framework

8

How does vim-emu work?

• What is emulated?
• NFVI PoPs
• MANO systems can interact with each

individual PoP, e.g., start a SF
• SFs are Docker containers (not VMs)
• Containers can contain any SF software

• Environment:
• Mininet- / Containernet-based
• User-defined topologies
• Each PoP offers its own VIM-like

interface to deploy/manage SFs
• Executed on single physical or virtual

machine
Emulated multi-PoP Environment

PoP CP
oP

 B

PoP A

MANO
(e.g., SONATA, OSM, OpenBaton)

{Running Service Chain}

S

t

Example: Three emulated NFVI PoPs

9

Adding NSH support to vim-emu

• SFC API

• Create, update, delete

forwarding paths

• Compatible with OpenStack

Neutron SFC API

• SFC Controller

• Compiles SFC configuration to

OpenFlow table entries

• Deploys table entries on

involved OVS

• OVS supports NSH (from v2.9)

• Prototype build on top of Ryu

vim-emu

Emu-Core

Topology
API

Resource
API

Endpoint
API

Containernet

CLIPoP 2
Endpoint ...PoP 1

Endpoint
PoP n

Endpoint

SFC Controller

SFC
API

10

Running vim-emu emulation with NSH forwarding

30ms
15ms

10ms

90ms

10ms
60ms

PoP1

PoP2 PoP5PoP3

PoP4

SF1

SF3

SF2

SF5

SF4

SFP

emulated multi-PoP environment

container-based SFs
executed on emulated environment

em
ul

at
ed

 s
ce

na
rio

VIM

VIM VIM
VIM

VIM

S
F
 e

x
e
c
u
ti
o
n
 l
a
y
e
r

n
e
tw

o
rk

 e
m

u
la

ti
o
n
 l
a
y
e
r

trnsp.

Eth.
NSH

original

payload

orig.

Eth.

NSH encapsulated packet

11

Evaluation (qualitative)
Does it work?

12

Evaluation: Scenario

13

Evaluation: Generated traffic

14

Results: Received traffic

15

Results: Dynamic traffic steering

total packets sent in experiment

16

Results: Dynamic traffic steering

total packets sent in experiment

17

Results: Dynamic traffic steering

total packets sent in experiment

18

Conclusion and outlook

• NSH is one of the key enablers for wide adoption of SFC

• Our work enables researchers and developer to quickly prototype NSH-based
SFCs in a local environment

• The presented solution is lightweight and can run on a developer’s laptop

• Future work
• There are other solutions, e.g., segment routing, which offer similar functionality as NSH

• http://www.segment-routing.net/ and RFC8402

• Extend vim-emu to support those alternative solutions

http://www.segment-routing.net/

19

Thank you!

Prototype: vim-emu with NSH support
• Source (Apache 2.0): https://git.io/vim-emu-nsh

TANGO advertisement
5G DEVELOPMENT AND VALIDATION PLATFORM FOR GLOBAL INDUSTRY-SPECIFIC NETWORK SERVICES AND APPS

5G DEVELOPMENT AND VALIDATION PLATFORM FOR
GLOBAL INDUSTRY-SPECIFIC NETWORK SERVICES AND APPS

